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ANALYSIS AND CONTROL OF SUPERSONIC VORTEX BREAKDOWN FLOWS
Osama A. Kandil*

Accomplishments

In the period of January 1, 1990 to August 15, 1990, the Principal Investigator with the
assistance of two of his Ph.D. students has achieved the following accomplishments:

I. Referable Conference Papers, Proceedings and Journal Publications:

1. Kandil, O.A. and Kandil, H.A., “Computation of Compressible Quasi-Axisymmetric Slender
Vortex and Breakdown,” Proceedings of IMACS First International Conference on Compu-
tational Physics, University of Colorado, Boulder, June 11-14, 1990, pp. 45-51. A copy
of the paper is attached.

Abstract

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated,
slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a
simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set
along with a compatibility equation are transformed from the diverging physical domain to a
rectangular computational domain. Solving for a compatible set of initial profiles and specifying
a compatible set of boundary conditions, the equations are solved using a type-differencing
scheme. Vortex breakdown locations are detected by the failure of the scheme to converge.
Computational examples include isolated vortex flows at different Mach numbers, external
axial-pressure gradients and swirl ratios.

2. Kandil, O.A, Wong, T.C, Kandil, H.A. and Liu, C.H.,, “Computation and Control of
Asymmetric Vortex Flow Around Circular Cones Using Navier-Stokes Equations,” 17th
Congress, International Council of Aeronautical Sciences, ICAS Paper 90-3.5.3, Stockholm,
Sweden, September 9-14, 1990. A copy of the paper is attached.

Abstract

The unsteady, compressible, thin-layer and full Navier-Stokes equations are used to nu-
merically simulate steady and unsteady asymmetric, supersonic, locally-conical flows around a
5°—seminapex angle circular cone.

* Professor and Eminent Scholar-Department of Mechanical Engineering and Mechanics, Principal Investigator






The main computational scheme which is used in this paper is the implicit, upwind, flux-
difference splitting, finite-volume scheme. Comparison of asymmetric flow solutions using
the thin-layer and full Navier-Stokes equations is presented and discussed. The implicity,
upwind, flux-vector splitting, finite-volume scheme has also been used to solve for the unsteady
asymmetric flow with vortex shedding. The unsteady-flow solution using the flux-vector splitting
scheme perfectly agrees with the previously obtained solution using the flux-difference splitting
scheme. Passive control of asymmetric flows has been demonstrated and studied using sharp-
and round-edged, thick and thin strakes.

3. Kandil, O.A. and Kandil, H.A., “Computation of Compressible Quasi-Axisymmetric Slender
Vortex Flow and Breakdown,” Journal of Computer Physics Communications, Elsevier
science Publishers, Amsterdam, Netherlands, 1990. A copy of the paper is attached.

Abstract

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated,
slender vortex are considered. the compressible, Navier-Stokes equations are reduced to a
simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set
along with a compatibility equation are transformed from the diverging physical domain to a
rectangular computational domain. solving for a compatible set of initial profiles and specifying
a compatible set of boundary conditions, the equations are solved using a type-differencing
scheme. Vortex breakdown locations are detected by the failure of the scheme to converge.
Computational examples include isolated vortex flows at different Mach numbers, external axial-
pressure gradients and swirl ratios. Excellent agreement is shown for a bench-mark case between
the computed results using the slender vortex equations and those of a full Navier-Stokes solver.

4. Kandil, O.A., Kandil, H.A. and Liu, C.H., “Three-Dimensional Compressible Vortex Break-
down Using Navier-Stokes Equations,” Accepted for Presentation at The AIAA 29th
Aerospace Sciences Meeting, Reno, Nevada, January 1991.

Abstract

The three-dimensional, unsteady, compressible, full Navier-Stokes equations are used to
solve for isolated vortex flow and breakdown. The equations are solved using an implicit, flux-
difference splitting, finite-volume scheme on a rectangular grid, where the grid is clustered in the
cross-flow plane around the vortex axis. At the inflow plane, four profiles are specified and the
fifth profile is extrapolated from the interior domain. On the side boundaries, the axial pressure
gradient is specified and the other flow conditions are extrapolated from the interior domain. At
the outflow plane, the pressure is specified and the other flow conditions are extrapolated from
the interior domain. Other flow boundary conditions are also used. Computational applications
include isolated vortex flows at different external axial-pressure gradients, swirl ratios and Mach
numbers.
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Figure | shows a sample computation of an isolated-vortex flow breakdown after 1800
iteration steps. The swirl ratio at the inflow plane is 0.6, the Mach number is 0.5, the Reynolds
number is 100 and the external pressure gradient (%ﬁ) = 0.125. The rectangular grid consists
of 51x51x100 points in the cross-flow plane (y and z difections) and the axial direction (x-axis),
respectively. figure 1.a gives the flow streamlines in the axial plane y-x in the breakdown region
showing almost an axisymmetric flow, stagnation points and bubble flow. Figures 1.b-1.d show
the velocity vectors and blow-ups in the breakdown region in the axial plane. Figure 1.e shows
the axial velocity, the presure and density variations along the vortex axis.

Work is underway to use fine grid, long vortex length as compared to its diameter, different
external axial-pressure gradients, different initial swirl ratios, different Reynolds numbers and
different Mach numbers.

5. Kandil, O.A., Kandil, H.A., Wong, T.C. and Liu, C.H., “Comparison of Asymmetric Flow
solutions Using Thin-Layer and Full Navier-Stokes Equations,” Accepted for Presentation
at the AIAA 29th Aerospace Sciences Meeting, Reno, Nevada, January 1991.

In this paper, we present comparisons of the thin-layer and Full Navier-Stokes Solutions for
asymmetric flows. These cover steady asymmetric flows, unsteady asymmetric flows and passive
control of asymmetric flows using a fin in the plane of geometric symmetry and side strakes.

I1. National and International Presentations and Other Related Activities

1. In the past year, the Principal Investigator gave presentations at:
— IMACS First International conference on Computational Physics, University of Colorado,
Boulder, June 11-14, 1990.
— 17th Congress, International Council of Aeronautical Sciences, Stockholm, Sweden,
September 9-14, 1990.

2. The Principal Investigator gave a Presentation at the Theoretical Flow Physics Branch During
the Fluid-Mechanics-Division Review of the Branch Research Work, March 1990.

3. the Principal Investigator gave a Presentation to the Naval Teting Command Group During
their Visit to Old Dominion University, May 11, 1990.

4. The Principal Investigator Organized and chaired the Following Sessions in Vortex Flow and

CFD:

—Session “Compressibility Effects,” ASME International Symposium on Nonsteady Fluid
Dynamics, ASME Fluids Engineering Divisions, Toronto, Canada, June 5, 1990.

—Session “Vortex Dominated Flow” AIAA 29th Aerospace sciences Meting, Reno, Nevada,
January 11, 1990.

—Twelve Sessions on CFD, Third International Congress of Fluid Mechanics, Cairo, Egypt,
January 2-4, 1990.
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The Principal Investigator has reviewed several papers for Journals and a Proposal for the
Army Research Office in the area of Vortex Flow; 2 papers for AIAA Journal, 2 papers for
Journal of Aircraft, 1 proposal for ARO.

Mr. Hamdy Kandil has developed Mean-Flow Profiles for Dr. Mehdi Khorrami who
is developing linear stability analysis for compressible vortex breakdown. The Division
Associate Chief, Mr. Dennis Bushnell has asked the Principal Investigator to help Dr.
Khorrami in his work. Mr. Hamdy Kandil has also developed a full Navier-Stokes solver
which is based on the thin-layer code CFL3D. The full Navier-Stokes solver has been tested
on asymmetric vortex flow cases and isolated vortex-flow cases. The results are in good
agreement with those computed by the CFL3D and with those computed by the slender
vortex code.
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Fig. 1.c. Blow-ups of velocity vectors in Vortex Breakdown
region, M, = 0.5, R = 100, 3 = 0.6, (%%)e = (.125, n = 1,800,
grid 51X51X100.
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Fig. 1.d. Bow-ups of velocity vectors in Vortex Breakdown
region, Mo, = 0.5, Re = 100, 8 = 0.6, (4£)_=0.125, n = 1,800,
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COMPUTATION OF COMPRESSIBLE QUASI-AXISYMMETRIC
SLENDER VORTEX FLOW AND BREAKDOWN

Osama A. Kandil and Hamdy A. Kandil
Department of Mechanical Engineering and Mechanics
Old Dominion University, Norfolk, VA 23529-0247

Abstract

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated,
slender vortex are considered. The compressible, Navier-Stokes equations are reduced to
a simpler set by using the slendemess and quasi-axisymmetry assumptions. The resulting
set along with a compatibility equation are transformed from the diverging physical domain
to a rectangular computational domain. Solving for a compatible set of initial profiles and
specifying a compatible set of boundary conditions, the equations are solved using a type-
differencing scheme. Vortex breakdown locations are detected by the failure of the scheme to
converge. Computational examples include isolated vortex flows at different Mach numbers,
external axial-pressure gradients and swirl ratios.

Introduction

The phenomenon of vortex breakdown or bursting was observed in the water vapor con-
densation trails along the leading-edge vortex cores of a gothic wing. Two forms of the
leading-edge vortex breakdown, a bubble type and a spiral type, have been documented
experimentally!. The bubble type shows an almost axisymmetric sudden swelling of the
core into a bubble, and the spiral type shows an asymmetric spiral filament followed by a
rapidly spreading turbulent flow. Both types are characterized by an axial stagnation point
and a limited region of reversed axial flow. Much of our knowledge of vortex breakdown
has been obtained from experimental studies in tubes where both types of breakdown and
other types as well have been gencrated®.

The major effort of numerical simulations of vortex breakdown flows has been focused
on incompressible, quasi-axisymmetric isolated vortices. Grabowski and Berger’ used the
incompressible, quasi-axisymmetric Navier-Stokes equations. Hafez, ct. al® solved the
incompressible, steady, quasi-axisymmetric Euler and Navier-Stokes equations and predicted
viscous breakdown similar to those of Garbowski and Berger. Spall, Gatski and Grosch’ used
the vorticity-velocity formulation to solve the three-dimensional, incompressible, unsteady
Navier-Stokes equations.

Flows around highly swept wings and slender wing-body configurations at transonic and
supersonic speeds and at moderate to high angles of attack are characterized by vortical
regions and shock waves, which interact with each other. Other applications which encounter
vortex-shock interaction include a supersonic inlet ingesting a vortex and injection into a
supersonic combustor to enhance the mixing process, see Delery, et al® and Metwally,
Settles and Horstman®. These problems and others call for developing computational
schemes to predict, study and control compressible vortex flows and their interaction with
shock waves. Unfortunately, the literature lacks this type of analysis with the exception of
the preliminary work of Liu, Krause and Menne!® and Copening and Anderson'!.






In this paper, the steady, compressible Navier-Stokes equations are simplified using the
quasiaxisymmetry and slendemess assumptions. A compatibility equation'® has been used
and the govemning equations are transformed to a rectangular computational domain by
using a Levey-Lee-type transformation. A compatible set of initial conditions and boundary
conditions have been obtained and the problem is solved using a type-differencing scheme.
The numerical results show the effects of compressibility, external pressure gradients in the
axial direction and the swirl ratio on the vortex breakdown location.

Highlights of the Formulation and Computational Scheme

Starting with the steady, compressible Navier-Stokes equations in the cylindrical coordinates

(%, t and ¢), assuming the isolated vortex flow to be slender [% =0 (715_-) ”U?: =0 (7%);
where [ is a characteristic length, v the radial velocity, U, the freestream velocity and R, the
freestream Reynolds number] and quasi-axisymmetric [333 ( ) = 0], and performing an order
of magnitude analysis, the equations are reduced to a compressible, quasi-axisymmetric,
boundary-layer-like set of equations. The dimensionless flow variables p, p, u, v, w, T and
p. are non-dimensionalized bY poo, Pood2y, 200, 2% /Cp and e, for the density, pressure,
velocity, temperature and viscosity; respectively, where C;, is the specific heat at constant
pressure. Next, we introduce a Levey-Lee-type transformation which is given by

X Pe p
- dx,n = / L4 n)
€ /o Peptedx, n NGIA
where ) is given by
A(f) _ rel() . .
MSF = —~< = ——==< = modified shape factor charaterizing the growth of
T(p) ~ Te(&) P grieg
vortex —flow boundary 2

and f(p) is a function relating the density integral at any axial station to that at the initial
station. It is equal to 1 for incompressible flow.

The subscript e refers to external conditions and the subscript i refers to initial location. The
governing equations become

ov. 1 9 AL, _ Pefhe Au
6n+rz\3§('\ur)+prv—0 where v = P \ r]xp 3)
du Ou 19p A w2 M (crau)
A yQu_ 10 AW NI (A 4.
uGE +V617 p O po r  Ardn \ A dn “.2)
where
= —n andc=-LE (4.b)
Pelbe Pelhe
Ay dp ©)
r n
aw ow A M [ 30 (w
— — 4+ =(V- = ———— e 6
u05+v6n+pr(v fu) w /\2r2317[cr 317(1')] (6)
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where P, = Prandtl number = 0.72.

where 4 = ratio of specific heats.

The viscosity p is related to the temperature through the Sutherland law. At the initial
boundary, £ = £;, we specify

ui =u(n),w;=w(n) and T; = T () )

The other compatible initial conditions are obtained from a compatibility equation and Egs.
(5) and (8). At the vortex axis, n = 0, we specify

— =V=w= — = (10)

At the outer boundary, n = n., we assume the boundary to be a stream surface, specify the
axial pressure gradient (%%)e and use the Euler equations to match the outer profiles to
those of the viscous core to obtain the conditions on weue, Te, pe.

Equations (3)-(7) are solved using an implicit, type-differencing scheme. The computational
procedure consists of two parts. In the first part a compatible set of initial profiles are
obtained at £ = £ and in the second part we use Egs. (3)-(8) to obtain p, T, u, p, w and
V(or v).

Numerical Examples

In the present numerical examples, the outer—dge of the vortex, 7., is taken as 10, and 1000
grid points are used and hence Ane = 0.01. The results are shown for two Mach numbers;
M = 0.5 and 0.75. The step size in the axial direction is 0.02 for M = 0.5 and 0.04 for
M = 0.75. For each Mach-number case, we show the effects of the external axial pressure

gradient; (28) = 0.125 and 0.25 and the effects of the swirl ratio; B=(%)_,=02and
X/e r=1

u

0.4. The initial profiles for u;, w; and T; are u; = constant, w; = 8 u; (2-r%) for r < 1 and
wi = Bui/r forr 2 1 and T; = 2.5, respectively. Figure 1 shows MSF, u,, p, and T, which
are referred to by curves A, B, C and D; respectively. The results show that the breakdown
length is more than doubled when the Mach number increases from 0.5 to 0.75. They also
show that while the outer boundary continuously increases for M = 0.5, it initially decreases
and then increases for M = 0.75; see the A curves. The adverse pressure gradient at the
vortex axis decreases faster for M = 0.75 than for M = 0.5. The results also show that the
external axial pressure gradient is a dominant parameter on the breakdown length. As the
external axial pressure gradient is doubled, the breakdown length substantially decreases.
Doubling the swirl ratio slightly decreases the breakdown length.

Figure 2 shows the profiles of u, w, p and p across r at axial stations until the breakdown for
M = 0.5 and 0.75 for the cases of (i{’:) =0.25 and 3 = 0.4 The initial profiles are indicated
e

3
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by the number 1 and the next shown station is indicated by 3. At M = 0.75, it is noticed that
the pressure and density gradients in the axial direction decrease faster than those at M =
0.5. The profiles show that the viscous diffusion at M = 0.75 is larger than that at M = 0.5.

It is concluded from the given numerical examples that increasing the flow Mach number has
a favorable effect on the vortex breakdown location. The extemnal axial pressure gradient is
a dominant parameter on the vortex breakdown. Its effect decreases as the Mach number is
increased. The present formulation and results could be used to generate compatible initial
profiles for the full Navier-Stokes solutions, and to provide data for breakdown-potential
cases for accurate computations using the full Navier-Stokes equations. The full Navier-
Stokes equations are currently applied to these cases.
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COMPUTATION AND CONTROL OF ASYMMETRIC VORTEX FLOW
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Osama A. Kandil®, Tin-Chee Wong**® and Hamdy A. Kandil**
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C. H. Liu***
NASA Langley Research Center, Hampton, VA, USA

Abstract

The unsteady, compressible, thin-layer and full Navier-
Stokes equations are used to numerically simulate steady and
unsteady asymmetric, supersonic, locally-conical flows around
a 5°-semiapex angle circular cone. The main computational
scheme which is used in this paper is the implicit, upwind,
flux-difference splitting, finite-volume scheme. Comparison of
asymmetric flow solutions using the thin-layer and full Navier-
Stokes equations is presented and discussed. The implicit,
upwind, flux-vector splitting, finite-volume scheme has also
been used to solve for the unsteady asymmetric flow with
vonex shedding. The unsteady-flow solution using the flux-
vector splitting scheme perfectly agrees with the previously
obtained solution using the flux-difference splitting scheme.
Passive control of asymmetric flows has been demonstrated
and studied using sharp- and round-edged, thick and thin
strakes.

Introduction

At cruise conditions, where the angle of attack is small,
most flight vehicles are designed 1o operate with attached
flows. In the moderate to high angle-of-attack (AOA) ranges,
which are typical conditions for highly maneuvering fighter
aircraft and missiles,extensive regions of large-scale vortices
develop on the leeward sides of the vehicle highly swept wings
and siender body. Within these AOA ranges, the cross-flow
velocity components and the gradients of other flow variables
become of the same order of magnitude or higher than those
of the axial direction. Consequently, flow separation occur
and vortices emanate from the three-dimensional separation
lines of boundary-layer flows on wings, strakes and fuselage
of the vehicle. If the vortices are symmetric and stable, their
influence could be exploited favorably to provide high lift and
maneuverability for the vehicle. On the other hand, if the
vortices become asymmetric or if vortex breakdown occurs,
the useful influence of the vortices is terminated. Large side
forces, asymmetric lifting forces and corresponding yawing,
rolling and pitching moments, which may be larger than those
available by the vehicle control system, develop and jeopardize
flight safety. The onset of buffeting due to vortex breakdown
is another unfavorable vortex-induced phenomenon.

Highly swept, round and sharp-leading-edge wings and
pointed slender bodies are common aerodynamic components

*Prolessar and Eminent Scholar, Depertment of Mechanical Engineering snd
Mechanics, Associaie Rellow ALAA.
**Rescarch Assistant, same Department, Member AIAA.
**+Group Leader, Theoretical Flow Physics Branch, Senior member AIAA.

to fighter aircraft and missiles. The study of vortex-dominated
flow around these isolated aerodynamic components adds to
our basic understanding of vortical flows under various condi-
tions including unsteady vortex-dominated flows, vortex-shock
interaction and asymmetric vortex flow breakdown. In this pa-
per, we focus on the problem of asymmetric vortex flow about
slender bodies in the high AOA range. The problem is of vi-
tal importance to the dynamic stability and controllability of
missiles and fighter aircraft.

The onset of flow asymmetry occurs when the relative in-
cidence (ratio of angle of attack to nose semi-apex angle) of
pointed forebodies exceeds certain critical values. At these
critical values of relative incidence. flow asymmetry devel-
ops due 1o natural and/or forced disturbances. The origin of
natural disturbances may be a transient side slip, an acoustic
disturbance, or likewise disturbance of short duration. The
origin of forced disturbances is geometric perturbations due
to imperfections in the nose geometric symmetry or likewise
disturbances of permanent nature. In addition to the relative
incidence as one of the determinable parameters for the onset
of flow asymmetry, the freestream Mach number, Reynolds
number and shape of the body-cross sectional area are impor-
tant determinable parameters.

Kandil, Wong and Liu' used the unsteady, thin-layer
Navier-Stokes equations along with two different implicit
schemes to simulate asymmetric vortex flows around cones
with different cross-section shapes. The numerical investi-
gation was focused on a 5°-semiapex angle circular cone
and local, conical flow was assumed. The first computa-
tional scheme was an implicit, upwind, flux-difference split-
ting, finite-volume scheme and the second one was an implicit,
central-difference, finite-volume scheme. Keeping the Mach
number and Reynolds number constants at 1.8 and 10°, re-
spectively, the angle of attack was varied from 10° to 30°.
At a = 10°, a steady symmetric solution was obtained and
the results of the two schemes were in excellent agreement.
Al a = 20° and irrespective of the type or level of the dis-
turbance, a steady asymmetric solution was obtained and the
results of the two schemes were in excellent agreement. Two
types of flow disturbances were used; a random round-off er-
ror or a random truncation-error disturbance and a controlled
transient side-slip disturbance with short duration. For the con-
trolled transient side-slip disturbance, the solution was unique,
and for the uncontrolled random disturbance, the solution was
also unique with the exception of having the same asymme-
try changing sides on the cone. At o = 30° an unsteady
asymmetric solution with vortex shedding was obtained, and
the vortex shedding was perfectly periodic. Next, the angle
of attack was kept fixed at 20° and the Mach number was



increased from 1.8 1o 3.0 with a step of 0.4. The solutions
showed that the asymmetry become weaker as the Mach num-
ber is increased. The flow recovered its symmetry when the
Mach number reached 3.0. Selected solutions of steady and
unsteady asymmetric flows have also been presented for cones
with elliptic and diamond cross-sectional arcas. Passive con-
trol of the flow asymmetry has been tentatively demonstrated
by using a fin on the leeward side of the body along the plane
of geometric symmetry.

Siclari? used the unsteady, Navier-Stokes equations with
a multigrid, central-difference, finite-volume scheme to solve
for steady asymmetric conical flows around cones with elliptic,
diamond and biparabolic sections. He addressed steady-flow
problems similar to those of the present authors in reference
1. He considered the flow around circular cones with semi-
apex angles of 5°, 6°, 7° and 8° at an angle of attack of 20°
and a Reynolds number of 10%. Varying the Mach number
from 1.4 to 3.0 with a step of 0.4, he showed that the flow
recovered its symmetry as the Mach number increased. The
higher the semi-apex angle was, the lower the Mach number
was, for the flow to recover its symmetry. Fixing the Mach
number at 1.8, the angle of attack at 20°, the Reynolds number
at 10° and the semi-apex angle at 5°, he decreased the cross-
section fineness ratio (ratio of width to length) for different
cross-sectional shapes. He showed that the flow recovered
its symmetry at a fineness ratio of 0.4 for the elliptic-section
cone, at 0.6 for the biparabolic-section cone and at 0.6 for the
diamond-section cone.

In a very recent paper by Kandil, Wong and Liu?, several
issues related to the asymmetric low solutions have been ad-
dressed. It has been shown that a unique asymmetric flow so-
lution is obtained irrespective of the size of the minimum grid
spacing at the solid boundary. The asymmetry could reverse
sides due to the random nature of the disturbance. [i has been
also shown that for the same flow conditions and same section
fineness ratio, diamond-section cones with sharp edges have
less flow asymmetry than those of the elliptic-section cones.
Moreover, it has been shown that passive control of flow asym-
metry of diamond-section cones requires fence heights that
are not necessarily equal to the local section width. On the
other hand, passive control of flow asymmetry of circular and
elliptic-section cones require fences with heights that are, at
least, equal to the local section width. Again, it was also
shown that unsteady periodic asymmetric flow with vortex
shedding has been predicted.

In reference 4 by Kandil, Wong and Liu, several unsteady,
asymmetric vortex flows with periodic vortex shedding for
circular and noncircular=section cones were presented and
studied.

In the present paper, we present comparisons of asymmet-
ric flow solutions using the thin-layer and full Navier-Stokes
equations. Next, we show that the flux-vector splitting scheme
produces unsteady asymmetric vortex flow with periodic vor-
tex shedding which perfectly agrees with the previously ob-
tained solution using the flux-difference splitting scheme!. Fi-
nally, passive control of asymmetric flows is studied using
sharp- and round-edged, thick and thin strakes.

Formuiation

Governing Equations

The conservalive form of the dimensionless, unsteady,
compressible, full Navier-Stokes equations in terms of time-
independent, body-conformed coordinates ¢!, ¢2 and £ is
given by
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The first element of the three momentum elements of Eq. (5)
is given by
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The second and third elements of the momentum clements are
obtained by replacing the subscript 1, everywhere in Eq. .
with 2 and 3, respectively. The last element of Eq. (5) is
given by
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The single thin-layer approximations of the full Navier-Stokes
equations demand that we only keep the derivatives in the

normal direction to the body, £2, in the viscous and heat flux
terms in Egs. (1), (7) and (8). Thus, we lets =2 for the term
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0(‘2: in Eq. (1) and s =2 and n = 2 in Egqs. (7) and (8).

These equations reduce to
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The reference parameters for the dimensionless form of the
equations are L, a,,. L/ay,. po, and py, for the length, veloc-
ity, time, density and molecular viscosity, respectively. The
Reynolds number is defined as Re = po, Vo, L/, and the
pressure, p, is related to the total energy per unit mass and
density by the gas equation

b= BEBEY =3 BETEW =060, (D)

1
p=(7—l)p[e—5(uf+u§+u§)] (13)
The viscosity is calculated from the Sutherland law
1+C
it =0 14
u=T (T+C)'C 04317 (14)

and the Prandtl number P, = 0.72.
In Egs. (1)-(12), the indicial notation is used for convenience.

Boundary and Initial Conditions

Boundary conditions are explicitly implemented. They
include inflow-outflow conditions and solid-boundary condi-
tions. At the plane of geometric symmetry, periodic conditions
are used for symmetric or asymmetric flow applications on the
whole computational domain (right and left domains). At the
farfield inflow boundaries [reestream conditions are specified,
while at the far-field outflow boundaries first-order extrapola-
tion from the interior points is used. On the solid boundary,
the no-slip and no-penetration conditions are enforced; u; =
u3 = wy = 0 and the normal pressure gradient is set equal to
zero. For the temperature, the adiabatic boundary condition
is enforced on the solid boundary. The initial conditions cor-
respond o the uniform flow with u; = u2 = u3 = 0 on the
solid boundary.

For the passive contro! applications using side strakes,
double thin-layer Navier-Stokes equations are used where one
thin-layer is used normal to the body and another thin-layer
is used normal to the strake surface. For these applications,
solid-boundary conditions are enforced on both sides of the
strake.

Computational Scheme

The main computational scheme used to solve the govern-
ing equations is an implicit, upwind, flux-difference splitting,
finite-volume scheme. It employs the flux-difference split-
ting scheme of Roe. The Jacobians matrices of the inviscid
fluxes, A, = 4; = 1.3, are split into backward and forward
fluxes according to the signs of the eigenvalues of the inviscid
Jacobian matrices. Flux limiters are used to eliminate oscil-
lations in the shock region. The viscous and heat-flux terms
are centrally differenced. The resulting difference equation is
solved using approximate factorization in the £', ¢2 and ¢°
directions. The resulting computer program can be used to
solve for the thin-layer Navier-Stokes equations and the full
Navier-Stokes equations. This code is a modified version of
the CFL3D which is currently called “FTNS3D". In this code,
the implicit, flux-vector splitting, finite-volume scheme, which
is based on the Van-Leer scheme®, can also be used instead
of the flux-difference splitting scheme. The flux-vector split-
ting scheme is used to solve for the unsteady asymmetric flow
application in this paper. This application is a validation so-
lution to the solution which has been previously obtained' for
the same application using the flux-difference splitting scheme.

Since the applications in this paper cover conical flows
only, the three-dimensional scheme is used to solve for locally
conical flows. This is achieved by forcing the conserved
components of the flow vector field to be equal at two planes
of x = 0.95 and 1.0.

Computational Applications

1. Comparison of Thin-Layer and Full Navier-
Stokes Asymmetric Solutions:

This numerical test has been carried out to study the dif-
ferences between asymmetric solutions using the thin-layer
Navier-Stokes equations and the full Navier-Stokes equations.
For this purpose, supersonic flow around a $°-semiapex an-
gle circular cone at 20° angle of attack is considered. The
freestream Mach number and Reynolds number are 1.8 and
10%, respectively. A grid of 161x81 points in the circumfer-
ential and normal directions is generated by using a modified
Joukowski transformation with a geometric series for the grid
clustering. The minimum grid spacing at the solid boundary
is fixed at A£2 = 1074, while the maximum radius of the com-
putational domain is kept at 21 r, where r is the radius of the
circular cone at the axial station of unity.

Three cases have been computed: the first is obtained us-
ing the single thin-layer Navier-Stokes equations. The second
is obtained using the one-direction full Navier-Stokes equa-
tions, where all the viscous terms in the £2 direction (normal)
are kept. The third is obtained using the two-direction full
Navier-Stokes equations, where all the viscous terms in the §2
and & directions (normal and circumferential) are kept. Figure
1 shows the results of this test in terms of the residual error ver-
sus the number of iterations, the total-pressure-loss contours
and the surface-pressure coefficient versus the meridian angle
0 (0 is measured from the leeward-side plane of geometric



symmetry). The residual-error figure of the thin-layer Navier-
Stokes solution shows that the asymmetric solution starts after
5,000 iterations. The error drops to machine zero (107'%) in
about 2,500 iterations, increases six orders of magnitude after
a total of 5,000 steps and then drops again producing the asym-
metric stable solution after 9,000 iterations. The residual-error
figure of the one-direction full Navier-Stokes solutions drops
4.5 orders of magnitude in 2,500 steps, increases one order of
magnitude after a total of 3,000 steps and then drops again
producing the asymmetric stable solution. It drops to machine
zero in a total number of iteration steps of 6,000. The residual-
error figure of the two-direction full Navier-Stokes solution
drops 4.5 orders of magnitude in 2,000 steps, increases one or-
der of magnitude after a total of 3,000 steps and then drops to
machine zero in a total of number of iteration steps of 6,000.
It is clear that the full Navier-Stokes equations produce the
asymmetric solution faster than the thin-layer Navier-Stokes
equations.

The total-pressure-loss-contours siow that the full Navier-
Stokes solutions produce thicker shear layers than those of
the thin-layer solution. More contour resolution in the vortex
cores is produced by the full Navier-Stokes solutions than that
of the thin-layer solution. Finally, the free-shear layer on the
body right-side of the full Navier-Stokes solutions is shorter
than that of the thin-layer solution. However, the C;, figures
of the three solutions are exactly the same.

Since the thin-layer Navier-Stokes equations are invalid
for low-Reynolds number flows, we used the full Navier-
Stokes equations for the same application given above but
with Re = 10*. Figure 2 shows an almost symmetric flow
solution which is obtained using the two-direction Navier-
Stokes equations.

2. Control of Asymmetric Flow Using Sharp-
Edged Thick Strakes:

Passive control of the asymmetric flow case of Fig. 1 is
considered using a sharp-edged thick strakes with length equal
10 0.3 of the local radius of the circular cone section. The grid
used is generated by using a hyperbolic grid generator with
transfinite grid interpolation to refine the grid in the strake
region. The double thin-layer Navier-Stokes equations are
used for this case. The iteration histories of the residual
error and lift coefficients are shown in Fig. 3. This case
takes 10,000 steps o obtain a stable symmetric solution with
machine zero error. The total-pressure-loss contours, the
cross-flow velocity and the surface-pressure coefficient of Fig.
3 show the perfectly symmetric solution. The surface-pressure
coefficient shows a jump in the pressure value at the leading
edges of the strakes which correspond to 6 = 90° and 6 =
270°. Comparisons of the C,, of Fig. 1 and Fig. 3 show that
the strakes produce higher lift in addition to their function of
eliminating the flow asymmetry.

3. Unsteady Asymmetry Flow Solution Using the
Flux-Vector Splitting Scheme:

This flow application has been solved previously in ref-
erence 1 using the flux-difference splitting scheme by Kandil,
Wong and Liu. The goveming equations used were the un-
steady, compressible, thin-layer, Navier-Stokes equations. The
resulting sojution showed unsteady asymmetric flow with pe-
riodic vortex shedding. The computed period of shedding cy-
cle was found as 1.4 with a shedding frequency of 4.488.
This flow application case is recomputed using the flux-vector
splitting scheme of Van-Leer with the thin-layer Navier-Stokes
equations. This flow application is that of a 5°-semiapex angle
cone at 30° angle of attack, 1.8 freestream Mach number and
10° freestream Reynolds number. The same grid of 161x81
with minimum spacing of A¢2 = 107* is reused here. The so-
lution is obtained using time-accurate stepping with At =107
The logarithmic residual figure, Fig. 4 shows the time history
of the solution. The first 5,000 time steps show that the resid-
ual error drops 8 orders of magnitude. During these steps the
flux limiters (act as numerical dissipation) are turned-on and
the solution shows symmetric steady flow. Thereafter, the flux
limiters are tumed-off (to minimize the artificial damping) and
the residual error increases 5 orders of magnitude, then drops
6 orders of magnitude and finally increases another six orders
of magnitude. Next, the solution goes through a transient re-
sponse for 2,000 time steps and finally it becomes periodic.
This is clearly seen after the 12,000 time steps. The solution
is then monitored every 100 time steps. In Fig. 4, we show
the solution for one-half the cycle of vortex shedding; from
n = 13,900 to n = 14,600. It is seen that vortex shedding is
obtained and by comparing the solutions of n = 13,900 and n
= 14,600, which are mirror images of each other, we conclude
that periodic vortex shedding is also reached. Again the pe-
riod of periodic shedding is 10x 1,400 = 1.4 corresponding
to a shedding frequency of 4.488, which is exactly the same
as that of the flux-difference splitting.

It is conclusive that the periodic vortex-shedding solu-
tions are confirmed. The reason that some researchers could
not obtain the periodic vortex-shedding case using the flux-
vector splitting is simply because of the artificial dissipation
produced by the flux limiters. This numerical dissipation pro-
duces high damping effect which suppresses the random dis-
turbance of the solution. By tuming-off the flux limiters, the
random disturbance solution can grow producing the asymmet-
ric unsteady vortex shedding flow. It should be noticed that
the flux-difference splitting scheme of Roe is less dissipative
than that of the flux-vector splitting scheme of Van-Leer. This
is why we could obtain the unsteady vortex shedding solution
of reference 1 even with the flux limiters turned-on.

4. Control of Unsteady Asymmetric Flow Using Sharp-
Edged and Round-Edged Thick and Thin Strakes

Passive control of unsteady asymmetric flow case of Fig. 4
is considered using different shapes and orientations of strakes.
In all the numerical tests presented in Figs. 5-8, the strake
length is 0.3 of the local radius of the circular cone section.
Figure 7 shows sample of typical grids which are used with the



flat-plate strakes with different orientations, § = 0°, 10° and
-10° (where § = strakes with different orientation angle). The
grid is generated by using a hyperbolic grid generator with
ransfinite grid interpolation to refine the grid in the strake
region. The double, thin-layer Navier-Stokes equations are
used in this analysis. In Fig. S, sharp-edged thick strakes,
which have the same geomety as that of Fig. 3, are used.
The strakes are still effective in eliminating the unsteady
asymmetric vortex-shedding flow at this high angle of attack.
The resulting flow is perfectly symmetric with a lift coefficient
higher than that of the unsteady asymmetric flow of Fig. 4.
Again, the Cp curve of Fig. 5 shows a jump in the pressure
coefficient at the strakes leading edge at § = 90° and 8 = 270°.
The resulling symmetric primary vortex cores are closer to the
leeward plane of symmetry and higher above the body surface
than those of Fig. 3. It took 11,000 iteration steps lo reach
this stable symmetric solution.

In Fig. 6, we replaced the sharp-edged thick strakes with
round-edged thick strakes which again produced a perfectly
symmetric solution in 6,000 iteration steps. The lift coefficient
is a little less than that of the sharp-edged thick strakes. The
resulting symmetric primary vortex core are a little closer to
the leeward plane of symmetry and a little less high above the
body surface than those of Fig. 5.

In Fig. 7, we use flat-plate strakes at orientation angle §
= 0°, 10° and ~10°, where § is measured from the horizontal
line a1 § = 90°. All three cases produce perfectly symmetric
solutions. The case with § = —10° produces the highest lift
coefficient followed by the case of § = 0° and then the case
of § = 10°. The case of § = -10° took 6,000 ileration steps,
the case of § = 10° took 8,000 iteration steps and the case
of 6 = 0° took 10,000 iteration steps, all to reach a stable
symmetric solution.

Concluding Remarks

In this paper, the unsteady, compressible, thin-layer and
Navier-Stokes equations are used to study several aspects of
asymmetric vortex flow around circular cones and its passive
control. The main computational scheme which is used to

produce the steady flow results is the implicit, upwind, flux-
difference splitting, finite-volume scheme. Comparisons of the
thin-layer and full Navier-Stokes asymmetric solutions show
that the full Navier-Stokes equations produce thicker shear-
layers than those produced by the thin-layer equations. More-
over, the full Navier-Stokes equations give better resolution
in the vortex cores. Finally, the full Navier-Siokes equa-
tions produce the asymmetric flows faster than the thin-layer
equations. It has also been shown that the flux-vector split-
ting scheme without flux limiters produces the same unsteady
asymmetric flow with periodic vortex shedding as that of the
flux-difference splitting scheme with flux limiters. Finally,
passive control of stcady and unsteady asymmetric flow has
been demonstrated by using several shapes of strakes. While
the strakes eliminate the flow asymmetry, they produce high
lift for the configuration.
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Abstract

Analysis and computation of steady, compressible, quasi-axisymmetric flow of an isolated,
slender vortex are considered. The compressible, Navier-Stokes equations are reduced to a
simpler set by using the slenderness and quasi-axisymmetry assumptions. The resulting set
along with a compatibility equation are transformed from the diverging physical domain to a
rectangular computational domain. Solving for a compatible set of initial profiles and specifying
a compatible set of boundary conditions, the equations are solved using a type-differencing
scheme. Vortex breakdown locations are detected by the failure of the scheme to converge.
Computational examples include isolated vortex flows at different Mach numbers, external axial-
pressure gradients and swirl ratios. Excellent agreement is shown for a bench-mark case between

the computed results using the slender vortex equations and those of a full Navier-Stokes solver.

Introduction

The phenomenon of vortex breakdown or bursting was observed in the water vapor condensation
trails along the leading-edge vortex cores of a gothic wing. Two forms of the leading-edge
vortex breakdown, a bubble type and a spiral type, have been documented experimentally [1].
The bubble type shows an almost axisymmetric sudden swelling of the core into a bubble, and
the spiral type shows an asymmetric spiral filament followed by a rapidly spreading turbulent
flow. Both types are characterized by an axial stagnation point and a limited region of reversed
axial flow. Much of our knowledge of vortex breakdown has been obtained from experimental

studies in tubes where both types of breakdown and other types as well were generated [2-4].

* Professor and Eminent Scholar,
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The major effort of numerical simulation of vortex breakdown flows has been focused on in-
compressible, quasi-axisymmetric isolated vortices. Grabowski and Berger [5] used the in-
compressible, quasi-axisymmetric Navier-Stokes equations. Hafez, et. al [6] solved the in-
compressible, steady, quasi-axisymmetric Euler and Navier-Stokes equations using the stream
function-vorticity formulation and predicted vortex breakdown flows similar to those of Gar-
bowski and Berger. Spall, Gatski and Grosch [7] used the vorticity-velocity formulation to solve

the three-dimensional, incompressible, unsteady Navier-Stokes equations.

Flows around highly swept wings and slender wing-body configurations at transonic and super-
sonic speeds and at moderate to high angles of attack are characterized by vortical regions and
shock waves, which interact with each other. Other applications which encounter vortex-shock
interaction include a supersonic inlet ingesting a vortex and injection into a supersonic combus-
tor to enhance the mixing process, see Delery, et. al [8] and Metwally, Settles and Horstman
[9]. These problems and others call for developing computational schemes to predict, study and
control compressible vortex flows and their interaction with shock waves. Unfortunately, the
literature lacks this type of analysis with the exception of the preliminary work of Liu, Krause

and Menne [10] and Copening and Anderson [11].

In this paper, the steady, compressible Navier-Stokes equations are simplified using the quasi-
axisymmetry and slenderness assumptions. A compatibility equation [10] has been used and the
governing equations are transformed to a rectangular computational domain by using a Levey-
Lee-type transformation. A compatible set of initial conditions and boundary conditions are
obtained and the problem is solved using a type-differencing scheme. The numerical results
show the effects of compressibility, external axial pressure gradients and the swirl ratio on the
vortex breakdown location. A bench-mark flow case has been solved using these equations and

the full Navier-Stokes equations. The results are in excellent agreement with each other.






Highlights of the Formulation and Computational Scheme

Starting with the steady, compressible Navier-Stokes equations which are expressed in
the cylindrical coordinates (%X,f and ¢), assuming the isolated vortex flow to be slender
[-;i =0 (7%:> ,% =0 (VIRT)’ where [ is a characteristic length, v the radial velocity, U,
the freestream velocity and R, the freestream Reynolds number] and quasi-axisymmetric
[%( ) = 0], and performing an order of magnitude analysis, the equations are reduced to a
compressible, quasi-axisymmetric, boundary-layer-like set. The dimensionless flow variables p,
P, u, v, w, T and y, are non-dimensionalized by px, pooa’,acc, a%,/Cp and p for the den-
sity, pressure, velocity, temperature and viscosity; respectively, where Cp is the specific heat at

constant pressure. Next, we introduce a Levey-Lee-type transformation which is given by

£ = / pesedi,n = 55 / L4r (1)

where A is given by

MO r(O)
MSF =) T )

= modified shape factor charaterizing the growth of

vortex —flow boundary 2
and f(p) is a function relating the density integral at any axial station to that at the initial station.
It is equal to 1 for incompressible flow.

The subscript e refers to external conditions and the subscript i refers to initial location. The

governing equations become
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where P; = Prandtl number = 0.72.
-1
p="1—pT (8)
Y

where v = ratio of specific heats.

The viscosity u is related to the temperature through the Sutherland law. At the initial boundary,

¢ = &, we specify
ui =u(n),w =w(n) and T; = T(n) ©

The other compatible initial conditions are obtained from a compatibility equation and Egs. (5)
and (8). At the vortex axis, n = 0, we specify

Ou

3 = =0 (10)

V=w=

T
on

At the outer boundary, n = ne, we assume the boundary to be a stream surface, specify the axial
pressure gradient (%%) and use the Euler equations to match the outer profiles to those of the
e

viscous core to obtain the conditions on u, we, Te, pe.

Equations (3)-(7) are solved using an implicit, type-differencing scheme. The computational
procedure consists of two parts. In the first part a compatible set of initial profiles are obtained
at £ = §; and in the second part we use Egs. (4)-(8) and the compatibility equation to obtain

p,u, w, p, Tand V (or v).






Numerical Examples

In the present numerical examples, the outer—edge of the vortex, 7e, is taken as 10, and 1000
grid points are used and hence Ane = 0.01. The results are shown for two Mach numbers; M =
0.5 and 0.75. The step size in the axial direction is 0.02 for M = 0.5 and 0.04 for M = 0.75. For
each Mach-number case, we solve for two external axial pressure gradients; (%&)e =0.125 and
0.25 and two swirl ratios; 3 = (%)r= , = 0.2 and 0.4. The initial profiles for u;, w; and T; are u;
= constant, w; = 3 u; r(2-r?) forr < 1 and w; = Bu;/r forr 2 1 and T; = 2.5, respectively. Figure
1 shows MSF, u,, pa and T, which are referred to by curves A, B, C and D; respectively. The
results show that the breakdown length is more than doubled when the Mach number increases
from 0.5 to 0.75. They also show that while the outer boundary continuously increases for M
= 0.5, it initially decreases and then increases for M = 0.75; see the A curves. The adverse
pressure gradient at the vortex axis decreases faster for M = 0.75 than for M = 0.5. The results
also show that the external axial pressure gradient is a dominant pafameter on the breakdown
length. As the external axial pressure gradient is doubled, the breakdown length substantially

decreases. Doubling the swirl ratio slightly decreases the breakdown length.

Figure 2 shows the profiles of u, w, p and p across r at axial stations until the breakdown location
for M = 0.5 and 0.75 for the cases of (%&)e = 0.25 and 3 = 0.4 The inidal profiles are indicated
by the number 1 and the next shown station is indicated by 3. At M = 0.75, it is noticed that
the pressure and density gradients in the axial direction decrease faster than those at M = 0.5.

The profiles show that the viscous diffusion at M = 0.75 is larger than that at M = 0.5.

Figure 3 shows the profiles of u, w, v and p which has been computed by the present method
and by an upwind Navier-Stokes solver for the case of M = 0.5, 8 = 0.6 and (%f:-)e = 0. For
the Navier-Stokes solver a rectangular grid of 100x51x51 in the axial direction and cross-flow
plane is used. The curves are labeled by the capital letter A, B... etc. Comparing the curves of

the two sets, a remarkable agreement is seen.
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It is concluded from the given numerical examples that increasing the flow Mach number has
a favorable effect on the vortex breakdown location. The external axial pressure gradient is
a dominant parameter on the vortex breakdown. Its effect decreases as the Mach number
is increased. Comparison of the present results with the full Navier-Stokes results gives a
strong confidence in the present analysis. The present formulation and results are used to
generate compatible initial profiles for the full Navier-Stokes solutions, and to provide data for
breakdown-potential cases for accurate computations using the full Navier-Stokes equations. The
full Navier-Stokes equations are currently applied to these cases, so that we can solve for the

flow in the breakdown region.
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